1,873 research outputs found

    ACCESS TIME OF EMERGENCY VEHICLES UNDER THE CONDITION OF STREET BLOCKAGES AFTER A LARGE EARTHQUAKE

    Get PDF
    The previous studies have been carried out on accessibility in daily life. However it is an important issue to improve the accessibility of emergency vehicles after a large earthquake. In this paper, we analyzed the accessibility of firefighters by using a microscopic simulation model immediately after a large earthquake. More specifically, we constructed the simulation model, which describes the property damage, such as collapsed buildings, street blockages, outbreaks of fires, and fire spreading, and the movement of firefighters from fire stations to the locations of fires in a large-scale earthquake. Using this model, we analyzed the influence of the street-blockage on the access time of firefighters. In case streets are blocked according to property damage simulation, the result showed the average access time is more than 10 minutes in the outskirts of the 23 wards of Tokyo, and there are some firefighters arrive over 20 minutes at most. Additionally, we focused on the alternative routes and proposed that volunteers collect information on street blockages to improve the accessibility of firefighters. Finally we demonstrated that access time of firefighters can be reduced to the same level as the case no streets were blocked if 0.3% of residents collected information in 10 minutes

    Curtailing Ecosystem Exportation: Ecosystem Services As a Basis to Reconsider the Merits of Export-Driven Agriculture in Economies Highly Dependent on Agricultural Exports

    Get PDF
    ABSTRACT Functioning ecosystems play a critical role in providing goods and services needed to sustain human life.\u27 Water provision and filtration, biodiversity, nutrient cycling, climate regulation, and carbon sequestration are all examples of services ecosystems provide that no society could survive without.2 Yet ecosystem services have historically been taken for granted, depleted by intention or ignorance, and replaced with inadequate substitutes.\u27 Recent research on ecosystem services has exposed the shockingly high local, regional, and global costs of losing these essential services.\u2

    Confluence Competition 2015

    Get PDF

    Guardians Ad Litem as Surrogate Parents: Implication for Role Definition and Confidentiality

    Get PDF
    SALMON (Scalable Ab-initio Light–Mattersimulator for Optics and Nanoscience, http://salmon-tddft.jp) is a software package for the simulation of electron dynamics and optical properties of molecules, nanostructures, and crystalline solids based on first-principles time-dependent density functional theory. The core part of the software is the real-time, real-space calculation of the electron dynamics induced in molecules and solids by an external electric field solving the time-dependent Kohn–Sham equation. Using a weak instantaneous perturbing field, linear response properties such as polarizabilities and photoabsorptions in isolated systems and dielectric functions in periodic systems are determined. Using an optical laser pulse, the ultrafast electronic response that may be highly nonlinear in the field strength is investigated in time domain. The propagation of the laser pulse in bulk solids and thin films can also be included in the simulation via coupling the electron dynamics in many microscopic unit cells using Maxwell’s equations describing the time evolution of the electromagnetic fields. The code is efficiently parallelized so that it may describe the electron dynamics in large systems including up to a few thousand atoms. The present paper provides an overview of the capabilities of the software package showing several sample calculations. Program summary Program Title: SALMON: Scalable Ab-initio Light–Matter simulator for Optics and Nanoscience Program Files doi:http://dx.doi.org/10.17632/8pm5znxtsb.1 Licensing provisions: Apache-2.0 Programming language: Fortran 2003 Nature of problem: Electron dynamics in molecules, nanostructures, and crystalline solids induced by an external electric field is calculated based on first-principles time-dependent density functional theory. Using a weak impulsive field, linear optical properties such as polarizabilities, photoabsorptions, and dielectric functions are extracted. Using an optical laser pulse, the ultrafast electronic response that may be highly nonlinear with respect to the exciting field strength is described as well. The propagation of the laser pulse in bulk solids and thin films is considered by coupling the electron dynamics in many microscopic unit cells using Maxwell’s equations describing the time evolution of the electromagnetic field. Solution method: Electron dynamics is calculated by solving the time-dependent Kohn–Sham equation in real time and real space. For this, the electronic orbitals are discretized on a uniform Cartesian grid in three dimensions. Norm-conserving pseudopotentials are used to account for the interactions between the valence electrons and the ionic cores. Grid spacings in real space and time, typically 0.02 nm and 1 as respectively, determine the spatial and temporal resolutions of the simulation results. In most calculations, the ground state is first calculated by solving the static Kohn–Sham equation, in order to prepare the initial conditions. The orbitals are evolved in time with an explicit integration algorithm such as a truncated Taylor expansion of the evolution operator, together with a predictor–corrector step when necessary. For the propagation of the laser pulse in a bulk solid, Maxwell’s equations are solved using a finite-difference scheme. By this, the electric field of the laser pulse and the electron dynamics in many microscopic unit cells of the crystalline solid are coupled in a multiscale framework

    The dependency pair framework: Combining techniques for automated termination proofs

    Get PDF
    Abstract. The dependency pair approach is one of the most powerful techniques for automated termination proofs of term rewrite systems. Up to now, it was regarded as one of several possible methods to prove termination. In this paper, we show that dependency pairs can instead be used as a general concept to integrate arbitrary techniques for termination analysis. In this way, the benefits of different techniques can be combined and their modularity and power are increased significantly. We refer to this new concept as the “dependency pair framework ” to distinguish it from the old “dependency pair approach”. Moreover, this framework facilitates the development of new methods for termination analysis. To demonstrate this, we present several new techniques within the dependency pair framework which simplify termination problems considerably. We implemented the dependency pair framework in our termination prover AProVE and evaluated it on large collections of examples.

    First-order formative rules

    Get PDF
    This paper discusses the method of formative rules for first-order term rewriting, which was previously defined for a higher-order setting. Dual to the well-known usable rules, formative rules allow dropping some of the term constraints that need to be solved during a termination proof. Compared to the higher-order definition, the first-order setting allows for significant improvements of the technique
    • …
    corecore